
Design, Implementation and Operation of

NetBSD Base System Packaging

Yuuki Enomoto∗ Ken’ichi Fukamachi†

Abstract

It is believed that UNIX operating system (OS)
built on fine granular small parts is preferable to one
built on the traditional large tarballs in order to sup-
port speedy security update, easy replacement and
rollback of specific parts. In Linux distributions, the
system are already divided into many small packages.
On the other hand, BSD Unix variants are behind
the curve on the base system packaging. To improve
NetBSD base system granularity, we propose a frame-
work for OS base system packaging. We have devel-
oped a software “basepkg” by making the best use of
pkgsrc framework and operate an experimental base
package distribution server to evaluate our software
in realistic environment. It is shown that replace-
ment of a few OS granular parts is clearly faster and
can provide extra useful functions for NetBSD users
and customers.

Key words: Unix, NetBSD, Open Source Software,
System Management

1 Background

Historically operating system (OS) has been man-
aged on one source tree and the source tree set has
been distributed.

In this quarter century, either of a large or small
archive or the combination is used for OS distribu-
tion.

∗Chitose Institute of Science and Technology, e-mail:
mail@e-yuuki.org

†Chitose Institute of Science and Technology, e-mail: k-
fukama@photon.chitose.ac.jp

”tarball” (which extension is known as ”.tgz”) is
one of typical large archive formats. BSD UNIX dis-
tributes the base system as a set of tarballs where the
term “base system” implies a set of programs official-
ly maintained and distributed by the project. In al-
most cases, OS base system distribution is divided by
roles to a set of tarballs such as ”base.tgz” (manda-
tory for the operating system), ”comp.tgz” (compiler
tools), ”man.tgz” (manual) and so on.

There is another classification such as the base sys-
tem or 3rd party software. Historically BSD UNIX
considers that the system consists of the following
two categories: (1) the base system built from the
official source tree and (2) 3rd party software not
contained on the source tree. Usually the latter 3rd
party software are managed as a set of small archives
called as “package” where this “package” implies a
container which consists of software, documentation,
configuration files and this package’s meta data re-
quired to operate in installation and de-installation.
Each package role, format and manager differs from
one Unix OS to another. Table 1 shows a list of OS,
package format and package manager.

Historically BSD Unix has been developed in its
own source tree including kernel, general command-

name format manager

FreeBSD txz pkg
NetBSD tgz pkg install
Debian deb apt
Red Hat rpm yum
openSUSE rpm zypper

Table 1: List of OS, package format and the manager

s, configuration files, and manuals. “Linux” distri-
bution is the opposite. What we call “Linux” was
released as just a kernel with a few core programs.
Accidentally, Linux distributions needed to assemble
a lot of system utilities in order to build a whole U-
nix clone system. For that reason, the base system
management based on a lot of small packages was
inevitable and a good idea for Linux distributions.
Major Linux distributions such as Debian and Red

Hat Enterprise Linux are already divided into many
small packages. These OS’s can manage both its
own base system and third-party software through
its package manager.
On the other hand, BSD Unix such as FreeBS-

D and NetBSD have each package framework e.g.
ports(7) and pkgsrc(7), but they have been used
only for third-party software management.
However today, for users and customers, it is better

that OS can be assembled on a lot of small parts
easily added or removed. It is suitable especially for
rapid security update, easy replacement and rollback
of specific parts. In this paper we call this granular
base system building “base system packaging”.
To implement a granular NetBSD base system with

features mentioned above, we have developed a base
system packaging utility “basepkg” for NetBSD.
The rest of this paper is organized as follows. In

Chapter 2, we review idea and technique for soft-
ware packaging on UNIX. In Chapter 3, we describe
basepkg usage and the internals to show how to write
a sustainable shell program by making the best use
of pkgsrc framework. We operate a base package dis-
tribution server experimentally and estimate the pro-
cessing speed. In Chapter 4, we discuss several issues
to resolve in our system.

2 Packages in BSD UNIX

As mentioned above, BSD UNIX consists of the
base system and optional 3rd party software not dis-
tributed within the base system. The 3rd party soft-
ware are called ports(7) on FreeBSD and OpenBSD,
and pkgsrc(7) on NetBSD. We can use pkgsrc(7)
on a lot of platforms1.

1http://www.pkgsrc.org/#platforms

+COMPACT MANIFEST meta-data, JSON format
a subset of +MANIFEST

+MANIFEST meta-data, JSON format
includes the whole information

bin/hangman binary

Table 2: Content of FreeBSD ports(7) package
hangman-0.9.2 12.txz.

In this section, we briefly summarize both 3rd par-
ty and base package system on FreeBSD and NetBSD
since the technical details are referenced in the latter
section.

2.1 Packages for 3rd Party Software

2.1.1 FreeBSD ports(7)

We review FreeBSD ports(7) briefly since FreeB-
SD ports(7) system is the ancestor of NetBSD
pkgsrc(7).
FreeBSD ports(7) is 3rd party software manage-

ment framework for “installing from source, and
packages, for installing from pre-built binaries”[2].
make(1) command is used to build a package. The
package consists of meta-data, compiled binaries,
configuration files and so on. Table 2 shows the con-
tent of “hangman” package. We can also use pkg(8)
command to manage packages.

2.1.2 NetBSD pkgsrc(7)

NetBSD pkgsrc(7) is a “ framework for building
and maintaining third-party software on NetBSD and
other UNIX-like systems.”[3]. Initially pkgsrc(7)
was a spin-off of FreeBSD ports(7). Hence, the fun-
damental usage of pkgsrc is similar to one of FreeBSD
ports(7).

Consider an example of “openssh” (pkgsrc/
security/openssh) installation. To build an
“openssh” package, you run make package in
pkgsrc/security/openssh directory to generate
the package openssh-7.5.1nb1.tgz in pkgsrc/

packages/All directory. The package consists of
the meta-data and the program content. Figure 1
shows the content of openssh-7.5.1nb1.tgz. The

openssh-7.5.1nb1.tgz/

+CONTENTS

+COMMENT

+DESC

+INSTALL

+DEINSTALL

+DISPLAY

+BUILD_VERSION

+BUILD_INFO

+SIZE_PKG

+SIZE_ALL

bin/

scp

sftp

ssh

...snip...

Figure 1: Content of of NetBSD pkgsrc package
openssh-7.5.1nb1.tgz. Unlike FreeBSD ports, p-
kgsrc meta-data consist of small separate files.

files beginning with the character “+” are meta-data
as same as ports(7). However unlike ports(7), the
meta-data consist of small separate files(Figure 1).

To manage packages, we can use programs pre-
fixed by pkg . We run pkg add(1) to install,
pkg delete(1) to de-install and pkg info(1) to dis-
play the information of the specified package. It is
important for us that several meta data files are used
as running hooks in installation and de-installation
processes (Table 3).

+CONTENTS list of contents and other information
hooked within pkg add(1) and pkg delete(1)
modify ownership, groupship and permission

+INSTALL a shell script
hooked within pkg add(1)

+DEINSTALL a shell script
hooked within pkg delete(1)

+DISPLAY message shown after installation

Table 3: A part of meta data contained in NetBSD
pkgsrc package. They can be used to run hooks in
installation/de-installation processes. For more de-
tails, see the online manual of pkg create(1)[4].

2.2 Package Details for Base System

2.2.1 FreeBSD PkgBase

It is traditional that FreeBSD uses make(1) to build
the kernel and userlands.

FreeBSD 11 introduced a base packaging mechanis-
m PkgBase (packaged base) and a new package man-
ager called “pkg” to manage the packages for both
base and 3rd party software. PkgBase is a “beta fea-
ture in the FreeBSD 11 branch with r298107”[5] to
manage the packaged base system in using pkg(8).
The packages are created by running make packages

after make buildworld and make buildkernel op-
erations. The format of these packages is same as one
of ports(7)’s package. In our environment FreeBS-
D base system comprises around 795 packages in the
case of amd64 architecture by default.
In addition FreeBSD has another update utility

freebsd-update(8) that is “used to fetch, install,
and rollback binary updates to the FreeBSD base sys-
tem” [6].

2.2.2 NetBSD syspkg

NetBSD also uses traditional make in actual build-
ing process of the kernel and userlands but NetBSD
has a top level dispatcher build.sh[7] to build cross
platform tool-chain, distributable tarballs and instal-
lation media and update the base system. It enables
automatic cross build for all architectures NetBSD
supports.

For base system packaging, NetBSD has a frame-
work called “syspkg” introduced at January 8, 2002
by jwise @, syspkg is also merged into build.sh as a
feature of the official building process. NetBSD wi-
ki says “There has been a lot of work in this area
already, but it has not yet been finalized”[8].

However syspkg is stagnant these years2. There
has been several problems in syspkg for these years.

• syspkg database has been incomplete. See
syspkg files such as deps, comments, and attrs

under src/distrib/sets/ for more details.

2For example, PR46937 (2012) is still open[9]. You can find
syspkg has not been maintained since February 21, 2010 by
judging log messages of distrib/syspkg directory in the source
tree.

base-sys-usr-7.1.0.20170311.tgz/

+CONTENTS

+COMMENT

+DESC

+BUILD_INFO

+PRESERVE

usr/

bin/

lib/

...snip...

Figure 2: Example format of a syspkg package
base-sys-usr-7.1.0.20170311.tgz. This format is
old pkgsrc one. Compare this with Figure 1.

• syspkg package format is not effective today
since it lacks several contents the current p-
kgsrc defines. Figure 2 shows the content of
base-sys-usr-7.1.0.20170311.tgz created by
running build.sh syspkgs.

• We can overwrite or remove important files by
accident since +PRESERVE handling is incom-
plete.

Accidental removal should be prohibited.
+PRESERVE file implies “used to denote that
the package should not be deleted”[4]. It is
used to indicate that this package should not be
removed. This property is important especially
for some critical packages e.g. etc-*.tgz which
contains /etc/passwd, /etc/group and so on.

Also the overwrite should be prohibited. For
example, when we can install packages e.g.
etc-*.tgz using pkg add(1), existing /etc files
are overwritten by pkg add(1).

It looks hard to directly fix syspkg framework
which consists of a lot of makefiles, scripts and un-
documented data. For this reason, we have developed
another base packaging mechanism as a third party
software by using only syspkg meta-data and making
the best use of pkgsrc framework.

feature syspkg basepkg

language Makefile and Bourne shell Bourne shell
install script none available
kernel package none supporting GENERIC kernel
imported to official source tree pkgsrc-wip

Table 4: Comparison of features between syspkg and
basepkg

3 Basepkg

3.1 What is Basepkg?

We have developed a new framework “basepkg”
that can package NetBSD base system instead of
syspkg. basepkg is an open source software dis-
tributed under BSD License. It published on github.
com/user340/basepkg in Oct 26, 2016. It is import-
ed to pkgsrc-wip on May 19, 2017. The feature com-
parison between basepkg and syspkg are shown at
Table 4.

basepkg is a Bourne shell script. It analyzes meta-
data(s) and dispatches the corresponding pkg * pro-
grams. basepkg is just a shell script up to about
1000+ lines, well coded and documented, so it is
easy to read. basepkg makes the best use of p-
kgsrc framework as could as possible. In the case
of syspkg, make and shell programming styles are
mixed, and syspkg is at least 2 times larger than
basepkg3. Hence we consider basepkg is simpler and
can be maintained more easily than syspkg.

It is commonly seen that a program will be used
longer than the author expected. To write a sus-
tainable program, basepkg is written to be POSIX
compliant and portable as could as possible. In
fact the current coding is POSIX compliant excep-
t hostname(1), mktemp(1) and pkg create(1). We
use ShellCheck4 to validate and gain code quality and
make the code warning-less as could as possible.

basepkg package format is same as pkgsrc one.
Hence the packages can be managed by pkg * util-
ities.

3The number of lines even in the two files (src/distrib/

syspkg/mk/bsd.syspkg.mk and distrib/sets/regpkg) are
about 1700 lines.

4http://www.shellcheck.net/

$SRCDIR (/usr/src)

$DESTDIR

/usr/pkg/share/basepkg/packages/$VERSION/$ARCH-$MACHINE_ARCH/$package.tgz

$SRCDIR/build.sh

genarete under $category/$package/
 +PERSERVE
 +BUILD_INFO
 +CONTENTS
 +DESC
 +COMMENTS
 +INSTALL
 +DEINSTALL

basepkg.sh

pkg_create ...

basepkg.sh temporary meta-data

 work/$category/FILES
 work/$category/$package/PLIST

syspkg meta-data

$SRCDIR/distrib/sets/mi
$SRCDIR/distrib/sets/md.$ARCH
+
basepkg patches

Figure 3: Basepkg Processing Internals: basepkg requires the built NetBSD base system on DESTDIR
build.sh generates. It reads files at /usr/src/distrib/sets/ with basepkg patches. It parses files to
generate processed meta data temporarily and creates several pkgsrc style files under each package directory.
Finally it runs pkg create(1) to create the packages.

basepkg meta-data are derived from syspkg but
corrected. For example, package utilities should not
remove a package holding a “+PRESERVE” file.
syspkgmeta data are incomplete but basepkg has in-
troduced a new essential5 list to handle the preser-
vation more correctly. Also basepkg checks package
dependency more correctly.

3.2 Basepkg Processing Internals

We describe the basepkg processing details (Figure
3). It runs as follows:

5It seems that syspkg also tried it but it has been incom-
plete since distrib/sets/attrs contains a list with preserve
flag.

1. basepkg gathers meta data from syspkg one and
prepare the next step.

basepkg reads list of a set of (file name, pack-
age name and options) from sets/lists/base/

mi (machine/architecture independent list) and
sets/lists/base/md.ARCH (ARCHitecture de-
pendent list) under /usr/src/disrib/ directo-
ry (see distrib/sets/README for more details
on file definitions under sets/). After excluding
files defined as obsolete in the mi and md.ARCH

files, basepkg parses the list to generate FILES

for each category e.g. base, etc and so on. Each
FILES has a mapping between package names
and filenames.

2. basepkg generates temporary meta data.

(a) basepkg reads FILES to create directories
for the corresponding base packages.

(b) basepkg creates PLIST files for each pack-
age. Each PLIST holds a list contained in
the package.

3. basepkg emulates the generation of pkgsrc meta-
data.

(a) basepkg reads sets/essential to gener-
ate proper +PRESERVE files in the corre-
sponding directories. It indicates that this
package should not be removed.

(b) basepkg creates +BUILD INFO file for each
package. It holds environment information
in package building.

(c) basepkg creates +CONTENTS file for each
package. It holds a list of files each package
contains and commands for pkg * tools.

(d) basepkg creates +DESC and +COMMENT files
for each package. These are brief descrip-
tions for the package.

(e) basepkg creates +INSTALL and
+DEINSTALL files to be hooked in in-
stallation (pkg add(1)) and de-installation
(pkg delete(1)) processes.

4. basepkg runs pkg create(1) for all packages (up
to about 800) to generate packages. In creating
packages, basepkg gathers the package content
under DESTDIR directory build.sh generated.

5. basepkg creates the checksum files (both MD5
and SHA512) over all packages.

For regression test, we have verified that the con-
tent of tarball category.tgz is same as the sum of
category-*.tgz base packages e.g. base.tgz==

∑
base-*.tgz.

3.3 Basepkg Installation

The latest version of basepkg can be obtained
at github.com/user340/basepkg/releases. It re-
quires the latest pkgtools/pkg_install, so we rec-
ommend the use of pkgsrc-wip/basepkg to in-
stall basepkg. When you install basepkg using

pkgsrc-wip, basepkg is installed to /usr/pkg/share/
basepkg directory by default.

3.4 How to Build Base Packages

The basepkg requires the built NetBSD base sys-
tem (the whole set under DESTDIR in the term of
build.sh) and pkg * tools.
Firstly, we prepare the NetBSD binary at DEST-

DIR. We recommend building it from the NetBSD
source tree6.

cd /usr/src

./build.sh -O ../obj -T ../tools tools

./build.sh -O ../obj -T ../tools distribution

./build.sh -O ../obj -T ../tools kernel=GENERIC

In this example, we assume the source directory
is /usr/src, the obj root directory is /usr/obj, the
tools directory is /usr/tools and basepkg root di-
rectory is the default one /usr/pkg/share/basepkg.

Secondly, we change to the directory where
basepkg is installed (/usr/pkg/share/basepkg by
default in using pkgsrc-ip). we run basepkg.sh
with “pkg” and “kern” options to build base pack-
ages. basepkg generates packages at packages/
[NetBSD_version]/[MACHINE]-[MACHINE_ARCH]
directory under /usr/pkg/share/basepkg directory
by default. For example, if you run basepkg.sh on
NetBSD-7.1/amd64, the corresponding packages are
generated at /usr/pkg/share/basepkg/packages/
7.1/amd64-x86_64 directory.

cd /usr/pkg/share/basepkg

./basepkg.sh pkg

./basepkg.sh kern

Figure 4 shows the part of etc-sys-etc-7.1.tgz
package content created by basepkg. The format
is same as pkgsrc one described above (See Sec-
tion 2.1.2), so the package can be handled by pkg *
tools used in pkgsrc.

6In fact, the latest basepkg works well except for the kernel
package building when we fetch binaries from NetBSD dai-
ly build system (nycdn.netbsd.org) and extract them under
DESTDIR.

etc-sys-etc-7.1.tgz/

+CONTENTS

+COMMENT

+DESC

+INSTALL

+DEINSTALL

+BUILD_INFO

boot.cfg

dev/

MAKEDEV

...snip...

Figure 4: Content of base package etc-sys-etc-7.1.tgz.
The format is aligned to the modern pkgsrc style.

3.5 How to Handle Base Packages

In the previous section basepkg processing is men-
tioned from the point of administration or base pack-
age provider view. In this section, we describe how
users and customers handle their system by using the
base packages.
Firstly, it is easy to add or delete the specific base

package by using pkg * tools since the package for-
mat is same as pkgsrc one. pkg add (1) can be
used to install the package. To remove it, we use
pkg delete(1).
To avoid confliction between pkgsrc and basepkg

packages, we should specify the other database path
such as /var/db/basepkg by “-K” option in using
pkg * tools,

cd ./packages/7.1/amd64-x86_64

pkg_add -K /var/db/basepkg games-games-bin

pkg_delete -K /var/db/basepkg games-games-bin

Currently in using raw pkg * tools to manipulate
base packages, we need to be very careful to handle
etc-* base packages such as etc-sys-etc-7.1.tgz
since it overwrites files under the /etc directory. To
avoid this disaster, once we extract the contents in
another directory and determine to apply the content
or not to /etc explicitly by hand.

pkg_add -K /var/db/basepkg -p tmp/basepkg \

etc-sys-etc-7.1.tgz

... apply it or not to /etc ...

To avoid these critical operations, we should pre-
pare a wrapper for users and customers not to handle

Test real time (s) user time (s) system time (s)

1 7.2374 0.2267 0.8443
2 19.2955 0.9457 1.1725
3 3.4656 0.0838 0.0924

Table 5: Comparison between processing time aver-
age among old and new installation methods.

raw pkg * tools.

3.6 Estimation of Basepkg Overhead

Packaging implies that an OS is built on a lot of
small packages. Hence the OS update process to add
or delete small parts must be faster. However the
package size to add or delete is not proportional to the
update processing speed since packaging introduces
several new overheads e.g. resolution of dependencies
among packages, execution of install scripts and so
on.

We have compared the installation time between
the traditional (tarball extraction) and our new
method (basepkg based). We processed the following
updates 100 times on NetBSD-7.1/amd64. We used
time(1) command to measure the processing speed.
The target category we used is “game” since “game”
category is not mission critical.

1. Fetch a tarball ”games.tgz” from
ftp.jp.netbsd.org/pub/NetBSD/NetBSD-7.

1/amd64/binary/sets/, then extract it at
$HOME/tmp directory.

2. Install all packages beginning with ”games-”
to system from basepkg.netbsd.fml.org/pub/

NetBSD/basepkg/7.1/amd64-x86_64

3. Install one ”games-games-bin” package to
system from basepkg.netbsd.fml.org/pub/

NetBSD/basepkg/7.1/amd64-x86_64

where basepkg.netbsd.fml.org is an experimental
base package distribution server we build and oper-
ate (See Appendix A for the server details). Table 5
shows the average time of the processing speed.

Table 5 verifies that our new installation using
basepkg is faster than the traditional one. However

it is not faster than we expected because of overheads
mentioned above. Only when we update a few pack-
ages in the system, the process is comparable to the
traditional one. In almost cases under normal opera-
tion, we replace only a few small parts for rapid secu-
rity update. In addition it is good we explicitly know
which parts we replace, not a large archive base.tgz.
Hence we consider base packaging is meaningful for
users and customers.

4 Discussion

Firstly, we summarize changes and improvements
from AsiaBSDCon2017[1].

• import to pkgsrc-wip repository.

• syspkg meta-data handling fixes:

– not generate obsolete packages.

– enhance +PRESERVE handling to cover
base, etc and shlib.

• hook support running +INSTALL and +DEIN-
STALL.

• cross build support.

• multi platform support.

We have verified basepkg.sh can run on Ubuntu
17.04.

There are a lot of technical issues to resolve as fol-
lows:

• basepkg processing speed.

We need to profile basepkg to improve the pro-
cessing speed. basepkg runs slower than syspkg.
Table 5 shows that basepkg user mode process-
ing is about 4 times larger than syspkg one. It
is not clear but the low speed may come from
that basepkg creates a lot of directories.

We must need to try better shell coding tech-
nique. For example, we should not use for nor
while loop as could as possible, instead use in-
ternal loops such as find and grep. Matsuura
et.al. says “Processing speed can be improved
when we use POSIX command chain through
pipes with least bifurcations and loops.” [10].

• basepkg database maintenance.

basepkg can run hooks within the process-
ing. We need to maintain hooks for such as
PRE-INSTALL, POST-INSTALL et.al. within
basepkg own meta data in addition to the cur-
rent patches. It is by nature better to merge it
back to /usr/src/distrib/.

• syspkg database maintenance.

basepkg uses syspkg meta data under src/

distrib/sets/. It is not clear who ensures the
consistency under src/distrib/sets/ files. For
example, it looks src/distrib/sets/descrs

and src/distrib/sets/comments has been in-
complete.

• more user friendly naming convention.

syspkg database naming convention is not clear
for users and customers. It should be changed
to more plain naming convention. For exam-
ple, a base package name base-postfix-bin for
postfix is obvious. However base-secsh-bin

for openssh is far from openssh we expect. It
is more difficult to find openssl than examples
mentioned above. The shared library libssl.so

is contained in base-crypto-shlib. The library
libssl.a used in compilation is contained in
comp-c-lib. In this example, the granularity
should be too re-considered since comp-c-lib in-
cludes several kinds of libraries. To resolve this
difficulty, as a workaround, it is better to provide
a wrapper with naming mapping service.

• a wrapper convenient for users and customers.

To resolve the issue mentioned at Section 3.5,
we should provide a wrapper utility to manip-
ulate base packages. This utility hides raw
use of pkg * tools and the database location
/var/db/basepkg. It is useful to provide the
following functions.

– It warns or asks the user instructions step
by step if etc-* is specified as the argument
to avoid unexpected overwrite of /etc.

– It is better to provide alias mapping
for ambiguous package names. For ex-
ample, wrapper update openssh actual-
ly runs pkg delete base-secsh-bin.tgz

and pkg add base-secsh-bin.tgz.

– It caches the fetched packages under /var/
cache/baspekg for later use. The cache re-
mains unless you run wrapper clean.

– It can rollback the specified base package
cached above.

• integrated system management support.

For users and customers, it must be useful to
provide automatic management function for the
base system like apt (Debian/Linux Advanced
Package Tool). For example, wrapper update

fetches the latest package database and wrapper

upgrade upgrades (deletes and adds) base pack-
ages automatically. This function implies sup-
port of automatic vulnerability check for base
packages.

basepkg is built on pkg * tools, so integration
with pkgsrc framework must be easy.

Currently pkgsrc vulnerability can be checked
automatically but the base system check depend-
s on your eyes7. The automatic vulnerability
check for base system is useful for users and cus-
tomers.

The vulnerability database of base packages can
be managed under pkgsrc audit-packages frame-
work. The database is same as /var/db/pkg/
pkg-vulnerabilities like this:

sys-secsh-bin<20171220 reason... url...

It must be better that basepkg works with
pkgin(pkgsrc/pkgtools/pkgin) to cover both
base and pkgsrc packages totally.

• base package distribution support.

It is not useful unless latest base packages are
not provided. It is required to support automatic
updates, rollbacks et.al. described above.

7You need to action based on NetBSD security advisory
release.

Currently we build and operate an experimental
base package distribution server (See Appendix
A for the server details) but our machine power
can generate base packages for at most 30 ar-
chitectures on only latest NetBSD stable branch
within one day. Appendix A discusses the cost
evaluation to operate more rapid up-to-date sys-
tem.

5 Conclusion

We have developed another framework “basepkg”
to package NetBSD base system. It is shown that this
framework provides more granular and faster update
of NetBSD base system and useful functions for users
and customers. However we have a lot of issues to
resolve for realistic system operations, so we need to
continue dogfooding and development.

References

[1] Yuuki Enomoto and Ken’ichi Fukamachi, 2017,
Maintain the NetBSD Base System Using pkg *,
www.netbsd.org/gallery/presentations/

yuuki/2017_AsiaBSDCon/basepkg.pdf

[2] The FreeBSD Documentation Project, Revi-
sion: 51193, Chapter 4. Installing Application-
s: Packages and Ports, FreeBSD Handbook,
www.freebsd.org/doc/handbook/ports.html

[3] NetBSD, 2007, pkgsrc, Miscellaneous Informa-
tion Manual.

[4] Jordan Hubbard, John Kohl and Hubert Feyrer,
2010, pkg create, General Commands Manual

[5] wiki.freebsd.org/PkgBase

[6] Colin Percival, 2017, freebsd-update, FreeBSD
System Manager’s Manual.

[7] Luke Mewburn and Matthew Green, 2003,
build.sh: Cross-building NetBSD, BSDCon ‘03.

[8] The NetBSD Project, 2014, syspkgs, wiki.

netbsd.org/projects/project/syspkgs/

[9] Lloyd Parkes, 2012, Lots of bro-
ken syspkgs, NetBSD Problem Report
#46937, gnats.netbsd.org/cgi-bin/

query-pr-single.pl?number=46937

[10] Tomoyuki Matsuura, Hiroyuki Ohno and
Nobuaki Tonaka, 2017, POSIX Centric Pro-
gramming to Make Software More Compati-
ble and Sustainable, Digital Practice 8(4), 352-
360, https://www.ipsj.or.jp/dp/contents/

publication/32/S0804-R1601.html.

A Estimation of Base Package
Distribution

A.1 Build By Ourself

A.1.1 Current VPS Case

Experimentally we operate a base package distri-
bution server basepkg.netbsd.fml.org which runs
on SAKURA Internet VPS (SAKURA VPS(v3) 2G
plan: 3 CORE CPU, 200GB storage, about 150 USD
(16,745 JPY) per year)8 . Currently we provide 30
architectures in NetBSD 7 STABLE.

We need to run a set of build.sh and basepkg.sh

for all target architectures since basepkg.sh requires
compiled objects at DESTDIR build.sh generates
(Section 3). Fortunately this process can run paral-
lelly, so we can run one set for one architecture on
one CPU CORE. If we can prepare enough large s-
torage (5GB per architecture per version), we can
run build.sh with -u option (do not run “make
cleandir”). The upper limit of 30 architectures
are restricted by this storage limit (200GB) to run
build.sh -u.

The base package building process costs about 1
hour per target where build.sh -u requires about
1000 sec. and basepkg.sh requires about 2000 sec.
Hence we need 10 hours to prepare 30 architectures
even if we can run processes parallelly per CPU
CORE. When we clean up the working directories
(i.e. build.sh runs normally without -u option), the
building process requires 6 times processing time per
target.

A.1.2 Cloud Case

The evaluation is underway.
Cloud service is more suitable for intermittent work

like this. The updates for stable branches are rare,
so we do not need to build base packages daily. If
we run this building process only when a NetBSD
security advisory is released and the target can be
restricted to stable branches, modern cloud service is
more proper than the current VPS service. We need
to estimate the cloud speed and cost whether the cost

8https://vps.sakura.ad.jp/

may be lower since cloud is CPU meter rate charging.
In the case of cloud service, we assume the following
usage:

• Normally the build process does not run. The
low cost cloud archive holds the built data (the
previous build result).

• On demand, we wake up the cloud service, ex-
tract the built data from the archive, build
base packages (by running build.sh -u and
basepkg), update web servers, re-archive the
built data and make the cloud sleep again.

A.2 Using NetBSD Daily Build Sys-
tem

Today it looks NetBSD daily build system can pre-
pare daily binaries for some branches e.g. NetBSD
7.1 stable branch. Hence basepkg distribution server
can fetch the tarballs and build base packages based
on them.
The processing time seems almost comparable to

the VPS case running build.sh -u described above
but with less storage consumption (1GB per archi-
tecture per version). Hence we hope to operate base
package distribution server at a low cost but only for
latest branches. The details of evaluation will be re-
ported at AsiaBSDCon 2018.

