
Developing CPE Routers based on NetBSD:

Fifteen Years of SEIL

Masanobu SAITOH(msaitoh@netbsd.org)∗ Hiroki SUENAGA(hsuenaga@iij.ad.jp)†

March 2014

Abstract

Typical ISPs use customized small routers to connect
their network from customer’s local networks. Such
routers are called CPE, Customer Premises Equip-
ment. We, Internet Initiative Japan (IIJ), also have
own CPE named ’SEIL.’ SEIL is a German word of
rope. SEIL ropes IIJ and its customers together.

The firmware of SEIL is a customized NetBSD. IIJ
has self-manufactured the firmware for 15 years, since
March 1999. We describe about some implementa-
tion and enhancement for NetBSD during SEIL’s 15
years history.

1 The Target environment of
our CPE

Customer Premises Equipments (CPE) are communi-
cation devices, such as Internet access gateways and
routers, deployed in customer’s homes and offices.
There are various customers, so we need to describe
the target customers and environments before enter-
ing detailed discussion.

IIJ is an ISP company and most of its customers
are corporations. Typical corporations use the In-
ternet to communicate with their partners, satellite
offices, and shops such as convenience stores.

Internal communications of corporations definitely
include a lot of confidential information. So our CPE
must have cryptographic functionalities such as IPsec

∗The NetBSD Foundation
†Internet Initiative Japan Inc.

and SSL, and their accelerators as much as possi-
ble. Supporting various secure tunneling protocols
are also important. Our CPE supports PPTP, L2TP,
L2TPv3, IPsec, SSTP, and so on, to satisfy many dif-
ferent requirements of our customers.

Most corporations don’t have enough IP addresses
and use NAPT to connect to the Internet. They also
use IP filters to ensure minimum security. Since there
are a lot of persons and computers in a office, perfor-
mances of NAPT and IP filters are most important
requirements of our CPE.

Such complicated requirements make CPE’s con-
figurations so difficult. IIJ have put efforts to sim-
plify configuration syntax, but there are limitations
to do so. Engineers of IIJ can write configurations,
but most engineers in various corporations can’t do
enough. Thus, IIJ has found one more important
requirement, simple and easy management of a num-
ber of CPEs. The word ’management’ includes some
concepts, configurations, operations, and monitoring.
The name SEIL was selected to show this principle of
management, it is abbreviation of ’Simple and Easy
Internet Life.’

Table 1 shows past CPEs which made to achieve
the mentioned requirements. Each of hardware ar-
chitecture has been changed by the era of network
environment, but core concepts of the CPEs are not
changed. In this paper, we focus on the concepts and
software implementations to realize it. We discuss
about our management framework at first. It is an
important start point of us, and an important dif-
ference between ISP’s genuine CPE and other CPEs.
In technical point of view, the management frame-
work is not a BSD specific topic. But it is important



Table 1: Hardware architecture of SEILs
WAN Interfaces LAN Interfaces CPU(Model) Released

128Kbps BRI 10Mbps Ethernet Hitachi SH2(SH7604)@20MHz Aug 1998
1.5Mbps PRI 10Mbps Ethernet Hitachi SH3(SH7709A)@133MHz Dec 1999
128Kbps BRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001
1.5Mbps PRI 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2001
100Mbps Ethernet 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Nov 2001
25Mbps ATM 100Mbps Ethernet Hitachi SH4(SH7750)@200MHz Oct 2002
1Gbps Ethernet 1Gbps Ethernet Freescale PowerPC G4(MPC7445)@600MHz Jun 2003
100Mbps Ethernet 100Mbps Ethernet Intel XScale(IXP425)@400MHz Dec 2003

1Gbps Ethernet

USB 3G/LTE Modem 1Gbps Ethernet Cavium Octeon(CN3010)@300MHz Feb 2008

1Gbps Ethernet

USB 3G/LTE Modem 1Gbps Ethernet Cavium Octeon(CN3120)@500Mhz Feb 2008

100Mbps Ethernet

USB 3G/LTE Modem

128Kbps BRI 100Mbps Ethernet Intel XScale(IXP432)@400MHz Oct 2008

1Gbps Ethernet

USB 3G/LTE Modem

1Gbps Ethernet

802.11n Wireless LAN Marvell Kirkwood(88F6281)@1.2GHz Feb 2013

to understand why ISPs have made own CPEs from
scratch. We discuss about extensions and modifica-
tions for NetBSD at second. And we discuss some
knowledge and tweaks to make our daily development
work flows easy and efficient.

2 Management of SEIL

2.1 Central management

Most important motivation of self-manufacturing
CPE is to manage CPEs from ISP politely. The qual-
ity of managing CPEs is one of the quality of Inter-
net connections. Most of CPEs are designed to be
managed by local network managers of a customer.
Of course, we can make a template configuration for
them, we can advice what to do, and so on. But IIJ
thinks that the work of customer should be almost
nothing. Only work is to check reports from ISP and
confirm there is no problem.

We create a management framework to achieve it.
The framework is named SMF, SEIL Management
Framework(Figure 1). It was released in 2003. The
framework has the following behaviors:

1. Zero Configuration. Just power the CPE on,
that’s all.

Figure 1: The SMF system

2. Watch the running status, logs of CPE by re-
sources in ISP.

A lot of our customers use this system to built and
manage complex networks they designed.

The SMF consists of server side system and CPE
side system. IIJ uses NetBSD to create the intelli-
gent CPE side system. The system is named ’recipe
framework’, and is developed using C language, li-
braries and scripting languages. We mainly have used
C languages for many years. In 2013, we began to
use mruby[1], a variant of Ruby scripting language,



to control NetBSD based CPE itself. It’s little diffi-
cult for C language to avoid buffer overflows. Using
scripting language can avoid the problem, so we use
it for performance independent part.

2.2 Manageability of UNIX like OS
based CPE

For end users, this is not free UNIX like systems but
CPE. So the following things are important:

easy to understand
Easily and uniformly understandable without
any knowledge of based OS. Easy to understand
what happened. Easy to understand it’s problem
or not. Easy to understand what is a problem.

stability
Not do panic. Strong against attack from others.

automation
Automatically change setting if it can. Usually,
some changes are done by editing files under /etc
on UNIX like OS, and some functions don’t con-
sider changes of other functions. If a change is
deterministic in system wide, it should be done
automatically.

3 Development of SEIL

3.1 Extending device drivers

CPE has a number of network devices that is not
common in desktop operating systems. CPE also has
a naming scheme of the devices that is different from
UNIX culture. IIJ has added some new H/W device
drivers and special if net.if xname handling code.

Some CPE support networking port other
than Ethernet. For example, SEIL supports
ISDN BRI(IPAC-X on a simple device BUS),
3G MODEM(emulates USB serial port), LTE
MDOEM(emulates USB Ethernet device). Most peo-
ples weren’t interested in IPAC-X, so we wrote the
driver from scratch. Most people want the drivers
for 3G/LTE modems, but there are no specification
document. IIJ haven’t had enough document in the

fact, but we have tried to write the device driver and
hold down the ugly BUGs of the 3G/LTE modems.
The modems are managed by userland daemon ’conn-
mgrd’. The daemon manipulates various type of P2P
connections such as ISDN, 3G modem, L2TP, and so
on. 802.11 wireless networking device that supports
AP-mode is also a topic on CPE. NetBSD has its own
802.11 stack, but IIJ has ported vendor genuine, but
buggy, 802.11 wireless support to NetBSD.

IIJ also has modified basic functionalities of
NetBSD’s network device. We can change the de-
vice name via ifconfig. Because port name of the
CPE such as lan1, lan2, are far different from BSD’s
device name such as wm0, em0, bge0, and so on. Of
course, we can translate CPE’s configuration name
to NetBSD device name. If we think about logging,
using existing daemons, to change the device name is
most cost effective way.

There are Ethernet switching devices in CPE.
NetBSD has no framework to manage Ethernet
switching functions such as Port based VLAN, per-
port link status detection, learning table separation.
IIJ wrote simple framework to do this and configura-
tion command named swconfig [2].

We also change queuing strategy of network de-
vices to work with link status detection. For exam-
ple, to queue packets to link-downed network device
wastes mbuf resources though such old packets are
useless. And, it’s sometime dangerous because some
old packet might cause the network trouble. So our
implementation drops the packet as soon as possible
if there were some problems on link state or protocol
state.

There are some pseudo networking device im-
plemented by IIJ. For example, IPsec tunneling
device[2], paravirtualized Ethernet driver for Hyper-
V. FreeBSD also has a Hyper-V driver. There is
no functional difference between FreeBSD’s one and
IIJ’s one. The reason why we implemented a driver is
simple, there was no FreeBSD driver when IIJ needed
it. These are such duplicated implementation, and
IIJ’s implementation is not so special, but some of
these can be useful.



3.2 Extending IP Networking stack

The IP networking stack is the most important part
of CPEs. We need both of the routing speed and ad-
ditional functionality. CPE is placed on a border be-
tween the ISP and the customer’s LAN. CPE doesn’t
require very high performance such as 10G Ethernet,
but require to absorb characteristics of each customer
and to maximize the benefits of the ISP services.

Several years ago, IIJ implemented own IP filter
and NAT/NAPT functions named iipf and iipfnat.
NetBSD had an IP filter implementation ipf , how-
ever it didn’t satisfy our requirements. pf and npf
wasn’t born yet. iipf had implemented some ideas to
improve throughput. It will be described in another
paper[2].

Our IPsec stack also has a caching layer on Secu-
rity Policy Database (SPD) and Security Association
Database (SAD). IPsec tunneling is also important
for VPN; many customers prefer Route-based VPN
to Policy-based VPN. This topic will be described in
another paper[2].

A CPE typically uses a very cheap CPU, thus
cryptographic accelerators are very important com-
ponents. IIJ has done many efforts to use the acceler-
ators effectively, and implemented a framework to use
the accelerators. Using accelerators in a C function
(i.e., single kernel context) was possible, but the re-
sulting performance was very slow. So IIJ decided to
separate IP stack into two parts, “before IPsec” and
“after IPsec”. This strategy is same as opencrypt(9)
subsystem and FAST IPSEC(4) stack that stems
from OpenBSD. This framework works fine today, so
IIJ has decided to use it. (Though there were some
minor problems fixed by IIJ, the performance of the
framework is fairly good now.)

A number of network interfaces can be causes of
many problems. For a desktop machine, there are
just a few network interfaces. But for a CPE, there
can be many pseudo network interfaces which pro-
vide various tunnel connections. If some code uses a
simple list to manage the interfaces, it becomes very
slow, and consumes a large amount of memory. For
example, getifaddrs() function uses a large memory
footprint in both of the kernel and userland processes
if there are a lot of interfaces. IIJ has added selec-

tor and cache layers on getifaddrs(). We can get
a list of interfaces which link-state is up by using
getifaddrs up() for example.

There are some common hacks on CPEs, such as
TCP-MSS clumping to avoid the Path MTU Discov-
ery problem and Session Hijacking to create trans-
parent proxy. IIJ has own implementations against
them to satisfy requirements from customers.

3.3 Implementing New Network Pro-
tocols

IIJ has implemented some network tunneling pro-
tocols on NetBSD. PPTP and L2TP protocols are
implemented in NetBSD userland. There is also an
in-kernel cut-through forwarding mechanism named
PIPEX. These functions are already merged to
OpenBSD 1.

We has an implementation of L2TPv3. The
L2TPv3 is a kind of Ethernet encapsulation and tun-
neling protocol described in RFC3931. The L2TPv3
network device acts as a kind of Ethernet device, and
can be added to an Ethernet bridging group. Our
CPE can bridge separated Ethernet segments via an
L2TPv3 network device. If multiple L2TPv3 network
devices are added to one bridging group, the CPE
acts as a virtual Ethernet HUB.

There are also some experimental implementa-
tions of new Internet Drafts. For example, IIJ
has a MAP (draft-ietf-softwire-map-xx) imple-
mentation. Because IIJ is an ISP company, so
we are so interested in new protocols. They are
not a standard protocol yet, but experimental im-
plementations are important to standardize good
protocols. The development of L2TPv3 is one
of successful efforts. It had been started with
a project that develops Internet Draft of L2TPv3
(draft-ietf-l2tpext-l2tp-base-xx).

Most CPEs support the UPnP protocol. IIJ im-
plements UPnP services from scratch. They are com-
pletely different from libupnp based implementations.
They are designed to cooperate with iipfnat and con-
trol iipfnat rules by the UPnP protocol.

1The merge has been done by yasuoka@openbsd.org



IIJ implements ’sockfromto’ which is a collec-
tion of extended socket API used in some operat-
ing systems. The typical functions of sockfromto
are sendfromto() and recvfromto(). These func-
tions enable to reduce a complicated usage of bind().
A sending socket which is bound the source port
can cause a unexpected packet arrival to the send-
ing socket. If you used INADDR ANY to receiving
socket, and forgot that the sending socket can receive
packets, some arrival packets may lost during sending
packets. sendfromto() can send packet with specified
source port without calling bind().

3.4 Standing for heavy Ethernet rx in-
terrupts

Traditional BSD system used simple spl mechanism.
A high priority event always obstructs lower prior-
ity events. In CPE case, Ethernet rx interrupt al-
ways obstructs IP Networking stack, routing dae-
mons, user interface, and so on. Especially, live-
lock of IP Networking stack is serious problem for
CPE. IIJ did some efforts to reduce such live-lock. It
was serious problem for IIJ, because the live-lock can
break our centralized management framework.

At first we tried to control interrupt enable/disable
bits, rate control bit of Ethernet devices. What is the
trigger to throttle the interrupts? We tried to add
some probes that detect stall of IP Networking stack.
Checking IP input queue(ipintrq) length, checking
system load(kern.cp time), checking callout timers,
etc, etc..

OpenBSD tell us to control rx buffer works fine, in-
stead of to control the interrupts directly. The idea is
implemented as MCLGETI API of OpenBSD 2. IIJ
has ported the MCLGETI API to NetBSD and does
some performance test. We confirm the MCLGETI
works fine enough by various inspection.

2The API has other motivation that reduce memory usage
on supporting jumbo frames.

4 Daily workflow

4.1 Creating new products

IIJ has created many products. Here is a list of our
common works to create a new product.

• Create plain new port of NetBSD like evbxxx.

• Create customized ramdisk of the product like
install kernel.

• Launch an NTP daemon and measure clock jit-
ter/drifts, and tune a clock parameter if needed.

• Send/Receive various sizes of Ethernet frames.
Frame with 802.1q VLAN tag often reveals MTU
handling problem of Ethernet drivers.

• Check if dmesg buffer (kern.msgbuf) is cleared
after software reboot. If it is cleared on reboot,
fix it not to clear. The buffer is important for
debugging.

• Measure primitive performances such as mem-
ory access. CPU benchmark(INT, FLOAT),
cryptographic benchmark(DES, AES, DH, ..),
system calls benchmark. The performance of
system calls tell us performance of VM(large
copyin/copyout), performance of exception han-
dlers. We often reveal a architecture dependent
problem by system call benchmarks.

• Measure IP routing performances using various
major commercial measuring equipments. Such
measuring equipments are also useful to apply
high network load to the product. The load often
reveals spl bugs.

• Check counters. If an value isn’t visible, add it.
If an counter is not incremented on some cases,
fix it.

• Modify log facility, level and the message. Some
logs’s level are inadequate for users, so change
it. Some log messages might be misunderstood
by users, so modify it or remove it. Some event
is important. If not log message is generated by
the event, add it.



• Throttling log. Some logs might be frequently
generated. If it occurred, stability of the system
will be bad.

Some of the works are hard to be done by non-
commercial hackers due to lack of environments,
equipments, and time. If bugs are found, BSD hack-
ers in IIJ sometimes merge the fix for the bugs.

4.2 Debugging NetBSD on small em-
bedded hardware

On developing commercial product, debugging is very
important, and we pay very much costs for it. To
minimize the costs, IIJ has implemented debugging
functionalities for small, embedded devices such as
CPE.

IIJ has customized the syslog daemon. The log ro-
tation mechanism on filesystem is works fine in desk-
top, but it is not always useful in restricted CPE.
To minimize memory usage, our syslogd has inter-
nal ring buffer to remember logs, and user interface
process can get logs via IPC. There are multiple ring
buffer per facilities, and user can configure the size of
each ring buffer. Most important facility is different
for each customers.

A CPE often has no storage device, so there is
no room to dump core files. So our kernel report the
core information of the core files to dmesg buffer. For
example, process name, program counter that causes
an exception, back-trace of the userland process. The
back-trace doesn’t include symbol information, but is
useful enough. MIPS processor has no frame pointer
so the back-trace is not so trusted.

IIJ extended ddb to debugging networking stack.
To print or list socket structure in kernel, To print
the last function who touches a mbuf structure. Due
to NetBSD-current modifies pool framework to sup-
port cache-coloring, some of these function are not
working now. We need to re-design these.

Watch dog timer(wdog) is very important compo-
nent in commercial product. IIJ has implemented
wdog framework, and there are many point to kick
the wdog. There is genuine wdog framework recent
NetBSD, we are surveying it. Configuring wdog is

not difficult, but kick the wdog is difficult. Espe-
cially to live-lock situation requires very sensitive de-
sign. panic() is also difficult situation. We do want
to see the information from panic() and ddb stack
dump, but we do avoid the infinite loop in dump.
We kick the wdog during dump, but there is limit in
the depth of stack. The dump can cause a exception
and start new stack dump. We force cpu reboot in
such situation.

4.3 Following the evolution of
NetBSD

IIJ currently uses NetBSD-6.x as it’s base system.
Past products used NetBSD-1.x and NetBSD-3.x.
Because the evolution of NetBSD is faster than life
cycle of our product lines, leaping into a new NetBSD
become a hard work for us. Though it’s easy to gen-
erate a diffs of our implementation, it’s sometimes
difficult to apply the diffs to a new NetBSD.

Unfortunately the last fifteen years was so tough
years, IIJ has not contributed to BSD commu-
nity enough. Few BSD developers in IIJ have
contributed to the community. For example, ya-
suoka@openbsd.org contributed and has developed
PPP implementation ’npppd’ and in kernel PPP cut
through mechanism ’PIPEX’ now.

As we wrote above, we have implemented some new
functions and have enhanced some current functions,
but a lot of have not merged yet.

5 Conclusion

IIJ has developed own CPE named ’SEIL’ for long
years. The name SEIL was often appeared in
NetBSD developers community in the past, but IIJ
didn’t say much about it. This and [2] are 1st public
articles about IIJ’s past works and knowledges. IIJ
hopes that the articles become some good lessons for
BSD communities.

References

[1] mruby https://github.com/mruby/mruby



[2] Masanobu SAITOH and Hiroki SUENAGA, “Im-
plementation and modification for CPE: filter
rule optimization, IPsec interface and Ether-
net switch” In proceedings of AsiaBSDCon2014,
March 2014.


