
Perfect(ing) hashing in NetBSD

Jörg Sonnenberger

March 16, 2013

Abstract

Hash tables are one of the fundamental data struc-
tures used in the different parts of an Operating
System from on-disk databases to directory caches
in the kernel. To provide the desired performance
characteristics, keeping the collision rate minimal
is crucial. If the construction of the hash function
guarantees that no collisions occur, it is a Perfect
Hash Function. This paper gives a short introduc-
tion into the algorithms developed in the last 20
years for this task. It looks at the uses in NetBSD
6 like nbperf and the constant database cdb as well
as work-in-progress code for routing and firewalling.

1 Introduction

Hash tables are data structures used to implement
associative arrays, i.e. they provide a mapping of
arbitrary complex keys to values or indices. They
are one of the oldest data structures for this pur-
pose and since their discovery in 1953, they have
been studied extensively and can be found in many
programs and libraries. The wide spread use is a
result of the SMP friendliness and efficiency as ide-
ally, inserts, lookups and removals are all constant
time operations.

The core of every hash table implementation is
the hash function. Typical examples are using the
remainder of the division by a prime or Bernstein’s
string hash h(x[0..n]) = 33 × h(x[0..n − 1]) + x[n]
with h(0) = 53811. All simple hash functions share
one important property: certain input keys are
mapped to the same index. This is called a hash
collision and requires special handling. Techniques
for dealing with them include linked lists between
elements with the same hash, repeating the hash-
ing with an additional counter as argument to find
a different position or resizing the hash table.

In the last years, a number of so-called com-
plexity attacks[5] have been published where an at-
tacker explicitly creates hash collisions to force the
target to waste time by slowing down the opera-
tions from expected constant time to linear in the
number of keys. One way to address the complex-
ity attacks is to move from hash tables to balanced

1This hash is also known as DJBX33A.

trees at the cost of logarithmic complexity for most
operations. The other alternative is deploying ran-
domised hash functions.

Randomised hash functions are also the build-
ing block for more powerful hash table schemes:
perfect hash functions. A Perfect Hash Function
(PHF) is constructed in such a way, that any two
keys of a known input set are mapped to different
indices, i.e. that no hash collisions can exist. This
makes them a perfect match for applications with a
(mostly) fixed key set. If the PHF also maps the n
keys to 0..n−1, it is called a Minimal Perfect Hash
Function (MPHF). The most well known program
for creating PHF and MPHF is GNU gperf. It has
been used for the keyword recognition in compilers
like GCC.

This paper introduces the important develop-
ments in this area of research since 1990. As prac-
tical applications the nbperf program in NetBSD
6 is presented as well the new constant database
cdb. An outlook to further work for using perfect
hashing in the routing table and in NPF is also
presented.

2 New algorithms for Perfect
Hash Functions

This section looks at the early algorithms for PHF
construction and challenges faced. It introduces the
most noticable modern algorithms developed since
1990 and how they work.

The best algorithmic choice for a specific appli-
cation depends on a number of common factors:

• Does the hash function preserve the key order?
If it does, integration is easier as the existing
table structures can be reused and the hash
function works as additional secondary index.

• How much space does the hash function needs
per key?

• What computations are needed for the hash
function?

• If the algorithm constructs a non-minimal
PHF, what key density can it achieve?

Comparing the individual properties and weight-
ing them according the specific needs results in the
correct choice.

2.1 Systematic construction of Per-
fect Hash Functions until 1990

Different authors have investigated construction
mechanisms for Perfect Hash Functions since the
invention of the hash table. Bostic published the
predecessor of GNU gperf around 1984. Knuth dis-
cussed examples in The Art Of Computer Program-
ming. A beautiful construction can be found in
Pearson’s paper ”Fast Hashing of Variable-Length
Text Strings” from 1990[7].

It is based on an 8-bit permutation table and tra-
versed according to the XOR combination of the
last hash value and the current input character.
The design looks very similiar to the RC4 stream ci-
pher. Pearson’s paper explicitly discusses ways to
systematically search for a permutation, but also
the limitations. A trivial case of a problematic in-
put is given where the target range has to be shifted
to produce a MPHF and it can be easily seen that
the algorithm doesn’t scale very well with the num-
ber of keys.

The (lack of) scalability of the construction
mechanism is a fundamental issue of the early ap-
proaches. If they work, they tend to provide very
fast and moderately compact hash functions. For
key sets larger than a few dozen keys at most,
the construction will generally fail or require ex-
ponential construction time. For this reason, per-
fect hashing hasn’t been deployed but for compiler
construction for a long time.

2.2 Czech, Havas and Majewski’s
Minimal Perfect Hash Functions

The CHM construction was published in 1992[2]. It
is one of the earliest, if not the earliest, expected lin-
ear time algorithm for the construction of MPHFs.
Expected linear time in this case means that the al-
gorithm uses randomised graphs with certain prop-
erties and try again, if a specific choice doesn’t fit.
Each run of the algorithm takes linear time and the
chance of requiring more than one run is very low.

The resulting hash function has the useful prop-
erty of being order preserving. This means that the
hash function preserves the input order by mapping
the n-th key is mapped to n − 1. In practise this
makes the hash function very easy to fit into exist-
ing code as e.g. tables mapping actions to handlers
don’t have to be reordered to fit the hash.

The algorithm depends one two central concepts.
The first concept is the creation of a random graph
by using two or more independent random hash
functions. This graph has n edges and m = cn

vertices (for some c ≥ 1). Each edge is created
by taking the value of the chosen hash functions
modulo m. If the graph is acyclic, the algorithm
continues. Otherwise, another try is made with a
different choice of random hash functions. If the
constant c is chosen correctly, the graph is acyclic
with a very high probability. When using two hash
functions, c must be at least 2. When using three
hash functions, c must be at least 1.24.

The second concept by Czech et al. is to continue
by assigning a number to every vertex, so that the
key number corresponding to each edge is the sum
of the vertices of the edge modulo m. The initial
value of all vertices is 0. An edge is chosen, so
that one of the vertices has a degree of one. With-
out such an edge, the graph would contain a cyclic.
Subsequently the value of the other vertex is up-
dated, so that the edge fulfills the desired sum and
the edge is removed afterwards.

The result requires storing m integers between 0
and n − 1 as well as the parameters for the cho-
sen random hash functions. It is the best known
construction for order-preserving MPHF. The re-
sult hash function takes the compution of the two
(three) chosen random hash functions, a modulo
operation for each, two (three) table lookups, sum-
ming up the results and computing another mod-
ulo. The modulo operation itself can be replaced
by two multiplications by computing the inverse.
The storage requirement is at least m log2 n, but
typically mdlog2 ne bits per key.

2.3 Botelho, Pagh and Ziviani’s Per-
fect Hash Functions

The BPZ construction was published in 2007[1] and
is very similar to the CHM algorithm. The main
difference is the way numbers are assigned to the
vertices. For BPZ, each edge is represented by one
of its vertices. The sum of the corresponding num-
bers modulo 2 (3) gives the representative. As such
the resulting hash function is not minimal by it-
self. At the same time, it requires much less space.
When using three independent random hash func-
tions, a value between 0 and 2 must be stored for
all m vertices. One simple encoding stores five such
values per byte (35 = 243 < 256). Using c = 1.24,
this requires 1.24×n×8/5 1.98 bit storage per key
with 24% unused entries.

To obtain a MPHF, some post-processing is
needed. The PHF can be reduced to a MPHF us-
ing a counting function. This function returns for
a given index k how many ”holes” the PHF has un-
til k. This can be represented as bit vector with
partial results ever so often memorised to keep the
O(1) computation time. Careful choices require two
additional table lookups and one 64 bit population
count with a storage requirement of approximatily

2.79 bits per key using three random hash func-
tions.

2.4 Belazzougui, Botelho and Dietz-
felbinger’s Perfect Hash Func-
tions

”Hash, displace, and compress” or sort CHD was
published in 2009[3] and is currently the algorithm
known to create the smallest PHF. Using three ran-
dom hash functions, a PHF can be constructed with
1.4 bit storage per key. The construction itself and
the resulting hash function is a lot more compli-
cated than BPZ though, so no further details will
be provided.

3 nbperf

nbperf was started in 2009 to provide a replacement
for GNU gperf that can deal with large key sets.
cmph 2 was investigated for this purpose, but both
the license and the implementation didn’t fit into
the NetBSD world. nbperf currently implements
the CHM algorithm for 2-graphs and 3-graphs as
well as the BPZ algorithm for 3-graphs. CHD
wasn’t available when the work on nbperf started
and hasn’t been implemented yet.

The output of nbperf is a single function that
maps a pointer and size to the potential table entry.
It does not validate the entry to avoid duplicating
the keys or adding requirements on the data layout.
If the callee of the hash function already knows that
it has a valid key, it would also add overhead for no
reason.

The most important option for nbperf is the de-
sired construction algorithm. This affects the size
and performance of the hash function. Hash func-
tions using CHM are much larger. The 2-graph
version requires two memory accesses, the 3-graph
version three. The actual cache foot print depends
on the number of keys as the size of the entries in
the internal data array depends on that. For BPZ,
the entries are much smaller, but some additional
overhead is needed to provide a minimal hash func-
tion. As mentioned earlier, CHM is easier to use in
applications, since it preserves the key order.

The following test case uses the Webster’s Second
International dictionary as shipped with NetBSD
and the shorter secondary word list. They contain
234977 and 76205 lines. Each line is interpreted as
one input key. nbperf is run with the ”-p” option to
get repeatable results. The ”tries” column lists the
number of iterations the program needed to find a
usable random graph.

2http://cmph.sourceforge.net

Input Algorithm Tries Run time in s
web2 CHM 1 0.58

CHM3 39 0.85
BPZ 11 0.51

web2a CHM 12 0.35
CHM3 7 0.17
BPZ 18 0.16

The resulting code for CHM can be seen in list-
ing 1

The “mi vector hash” function provides an
endian-neutral version of the Jenkin’s hash
function[4]. The third argument is the chosen seed.
The modulo operations are normally replaced by
two multiplications by the compiler.

At the time of writing, two applications in
NetBSD use nbperf. The first user was the new
terminfo library in NetBSD 6 and uses it for the
key word list of tic. The second example is apro-
pos, which contains a stop word list (i.e. words to
be filtered from the query). This list is indexed by
a Perfect Hash Function.

Further work for nbperf includes investigating
simpler random hash function families to provide
results with performance characteristics similar to
GNU gperf’s hashes. An implementation of the
CHD algorithm is also planned.

4 The NetBSD constant
database

NetBSD used the Berkeley Database to provide
indexed access for a number of performance sen-
sitive interfaces. This includes lookups for user
names, user IDs, services and devices. The Berke-
ley Database has a number of limitations for this
applications, which opened up the question of how
to address these:

• Lack of atomic transactions,

• Database size overhead,

• Code complexity,

• Userland caching on a per-application base,

The first item ensures that most use cases in the
system deploy a copy-on-write scheme for the (rare)
case of modifications. It also means that any pro-
gram has to be able to regenerate the database con-
tent after a disk crash.

The second item matters for embedded systems
as it limits what database can be shipped pre-built.
The third item is somewhat related, if the disk im-
age doesn’t require write support, it still can’t leave
the relevant code out.

The last item increases the memory foot print
and reduces sharing data. It also adds overhead for

Listing 1: CHM example

1 #include <s t d l i b . h>
2

3 u i n t 3 2 t
4 hash (const void ∗ r e s t r i c t key , s i z e t key len)
5 {
6 stat ic const u i n t 3 2 t g [46 9955] = {
7 /∗ . . . ∗/
8 } ;
9 u i n t 3 2 t h [3] ;

10

11 mi vector hash (key , keylen , 0x00000000U , h) ;
12

13 return (g [h [0] % 469955] + g [h [1] % 469955]) % 234977;
14 }

multi-threaded applications as the library has to
avoid concurrent access to the internal block cache.

NetBSD has imported SQLite, which provides a
higher level library including transaction support.
This doesn’t help with the items above, especially
the third. A new library was created to complement
SQLite: the constant database. This format pro-
vides a read-only storage layer with deterministic
access time, lock-free operation and based on mem-
ory mapped files to fully utilize the kernel cache.

The constant database (CDB) consists of two
parts. The first part is the value storage, allow-
ing access to each record using the record num-
ber. It can be used to iterate over the content
or to link entries together. The second part pro-
vides a Perfect Hash Function for additional key
based access. The keys are not stored on disk, so
the application is responsible for doing any valida-
tion. For most file formats, the key is part is of the
record anyway and especially when using multiple
keys for the same record, storing would increase the
file size without justification. Key lookup requires
one computation of mi vector hash for the given
key and reading three locations in the on-disk hash
description. Worst case is thus three page faults
with loading the blocks from disk. That gives the
index and one more access the actual data offset.
The result is a pointer, size pair directly into the
memory mapped area. Looking up the same key
twice therefore doesn’t result in any additional IO
nor does it require any traps, unless the system is
low on memory.

In terms of code complexity, the CDB reader
adds about 1.6KB to libc on AMD64 and writer
around 4.3KB. As the database files are often the
same size or smaller than the corresponding text
sources, dropping the text versions can result in an
overall decrease in size.

For NetBSD 6 the device database, the service
database and libterminfo use the new CDB format.

The resulting databases are typically less than one
fourth of the size of the corresponding Berkeley DB
files. The creation time has also improved. Further
work is required to convert the remaining users in
libc, but also to provide access in other programs
like Postfix.

5 Perfect hashing for the
route lookup

Cleaning up the routing code and investigating new
data structures and/or implementations is on-going
work in NetBSD. David Young provided the first
major part for this by isolating access to the radix
tree and hiding it behind a clean interface. The
pending work moves the preference selecting (i.e.
which of two routes with the same netmask is cho-
sen) and the special case of host routes out of the
radix tree into the generic layer. This changes will
allow replacing the old BSD radix tree with less
generic, but faster code. It also makes it possible to
switch the lookup data structure for the fast path.

The most interesting alternatives are compressed
tries[6] (out of the scope of this paper) and multi-
level hashing[8]. Multi-level hashing is based on
the idea of performing the CIDR3 lookup as binary
search on the possible prefix lengths. For IPv4, this
could mean starting with looking for /16 routes and
depending on match or not, continue with /8 or
/24 entries. This requires adding markers for more
specific routes to direct the search.

Consider the following routing table:

3Classless Inter-Domain Routing

Destination network Gateway
0/0 192.168.0.10
127/8 127.0.0.1
192.168.0/24 192.168.0.2
192.168.1/24 192.168.0.1
10/8 192.168.0.1
10.0.10/24 192.168.0.5
10.192/12 192.168.0.6
11.192/12 192.168.0.7

A search for 10.0.10.1 will start by looking for
10.0/16 in the hash table to be constructed. No
such route exists, but the search has to continue
with larger prefix length to find the correct entry
10.0.10/24. For this purpose, a marker has to be
added with entry 10.0/16 and a reference to 10/8.
The reference avoids the need for backtracking, i.e.
when searching for 10.0.11.1. They can either ref-
erence the covering route or copy the correspond-
ing gateway, depending on the granularity of traffic
accounting. With the additional marker entries,
the following content of the hash table is enough:

Destination network Type Data
0/0 GW 192.168.0.10
127/8 GW 127.0.0.1
192.168/16 R 0/0
192.168.0/24 GW 192.168.0.2
192.168.1/24 GW 192.168.0.1
10/8 GW 192.168.0.1
10.0/16 R 10/8
10.0.10/24 GW 192.168.0.5
10.192/12 GW 192.168.0.6
11/8 R 0/0
11.192/12 GW 192.168.0.7

For this specific case, three additional entries are
enough as the marker for 10.192/12 is 10/8 and
that’s already present as route. Using perfect hash-
ing ensures a predictable lookup cost as it limits the
number of expensive memory accesses. Using the
BPZ algorithm with a 2-graph and no post-filtering
means a hash table utilisation of 50% and approx-
imately 2 bit per key storage for the hash function
itself. It is possible to use a single hash table for
all entries or to use a separate table for each prefix
length. The latter allows using 64 bit per entry in
case of IPv4 (32 bit network, 32 bit as the next-hop
identifier) and between 64 bit and 160 bit for IPv6.
Even for a core router in the Default Free Zone,
100,000 entries and more fit into the L3 cache of
modern CPU.

The downside of using perfect hashing is the con-
struction time. Investigations have to be performed
on how critical the resulting update time is for busy
routers.

Further optimisations can be deployed. The op-
timal branching is often not a static binary search,
so storing hints for the next level to look at can be
useful. Published research by Waldvogel et al. sug-
gests that the average number of hash table probes

can be much less than 2, when chosing the correct
order. The lookup table itself can avoid redundant
entries, i.e. if a more specific router and the imme-
diate covered route have the same next-hop. This
implies less precise accounting though.

6 Summary

Algorithms like CHM, BPZ and CHD provide a
fast, practical construction of Perfect Hash Func-
tions. This makes it possible to use them in dif-
ferent fields from performance critical read-mostly
data structures, like the routing tables, to size sen-
sitive on-disk databases. NetBSD 6 is the first BSD
to use them in the real world and more areas will
be covered in the future.

Areas for open research and practical implemen-
tations outlined in this paper include finishing the
implementation in the network stack and finding
fast simple random hash functions to replace the
remaining use cases of GNU gperf.

References

[1] F. C. Botelho, R. Pagh, and N. Ziviani. Simple
and space-efficient minimal perfect hash func-
tions. In In Proc. of the 10th Intl. Workshop on
Data Structures and Algorithms, pages 139–150.
Springer LNCS, 2007.

[2] Z. J. Czech, G. Havas, and B. S. Majewski. An
optimal algorithm for generating minimal per-
fect hash functions. Information Processing Let-
ters, 43:257–264, 1992.

[3] F. Botelho D. Belazzougui and M. Dietzfel-
binger. Hash, displace, and compress. In Al-
gorithms – ESA, pages 682–693, 2009.

[4] B. Jenkin. Hash functions. Dr. Dobbs Journal,
September 1997.

[5] A. Klink and J. Wälde. Efficient denial of ser-
vice attacks on web application platforms, 2011.

[6] S. Nilsson and G. Karlsson. IP-Address lookup
using LC-tries, 1998.

[7] P. Pearson. Fast hashing of variable-length text
strings. Communications of the ACM, 33:677–
680, June 1990.

[8] M. Waldvogel, G. Varghese, J. Turner, and
B. Plattner. Scalable high speed ip routing
lookups. In Proc. ACM SIGCOMM, pages 25–
35, 1997.

