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What is this?

● With this framework,  Platforms that run 
NetBSD kernel can act as USB devices, such 
as USB serials, mass storage, printers, 
Ethernet adapters, etc.
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USB descriptors
Device Descriptor
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Standard Device Descriptor

From USB 2.0 specification.



  

USB device

Interface

Host side Peripheral side

Endpoint

Interface
Endpoint

Endpoint

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver
for the device 

as-a whole

Load 
drivers

Endpoint

Pipes

Composite device and host-side 
drivers (1)

Determined by 
Device ID, 

Device Class 
ID, etc.



  

USB device

Interface A

Host side Peripheral side

Endpoint

Interface B
Endpoint

Endpoint

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver 
for the interface B

USB device driver 
for the interface A

Load 
drivers

Endpoint

Pipes

Composite device and host-side 
drivers (2)

Determined by 
Interface ID, 

Interface Class 
ID, etc.



  

Design Goal of our Framework

● Common tasks among many USB devices are 
done in the framework.
– Let framework users to focus on codes for 

functionality of interfaces they want to implement.

● The framwork and interface implementation 
should be independent of the characteristic of 
USB client controllers.



  

Design Goal of our Framework

● Interfaces can be implemented either as
– in-kernel device drivers, or

– userland programs

●  



  

Design Goal of our Framework

●  A USB device implemented using this 
framework can “transform” into a different USB 
device without rebooting into an another kernel 
binary.
– Interfaces can be attached to/detached from the 

USB device on-the-fly. 

●



  

Design Goal of our Framework

● USB Interface implementation can be used to 
make  a simple USB device, or to form a 
composite device combined with other interface 
implementations. 



  

components in the framework

● USBP
● Client controller drivers
● USB interface drivers
● Userland interface to USBP.
● Userland programs for USB interfaces.



  

components in the framework
Kernel space Userland

USB 
interface 

implemented 
as a 

userland 
program.

I/F to USBP

read/
write/
ioctl

USBP

USB 
interface 

implemented 
as a in-
kernel 

device driver

USB client 
controller 

dirver

USB 
Client 

Controller



  

components in the framework

● USBP
– logical driver for peripheral-side USB support.
– handles USB protocol on control pipe, such as 

enumeration and configuration.
– implements functionality of the USB devices

● Client controller drivers
– there are many kind of client controllers
– control send/receive of USB packets.
– USBP and interface drivers access to the controller 

through a common interface.



  

components in the framework

● USB interface drivers
– USB serial, communication device class, mass 

storage, human interface device, audio, video, etc.
● Userland interface to USBP.

– in order to implement USB interface functionality 
as userland programs.

● Userland programs for USB interfaces.



  

Kernel configuration for peripheral-
side support

pxaudc0 at obio0   # Client controller driver
usbp0 at pxaudc0   # USB Peripheral-side support

cdcef0 at usbp0    # CDC Ethernet model

upftdi0 at usbp0   # FTDI USB serial emulation
ucom* at upftdi?

usbpusr* at usbp?   #  Userland gateway for USBP

in config(5)
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API for USB interface drivers
Note:  the API is now being debugged and may be modified in the future.
          It is already modified from the version in my paper. 

usbd_status usbp_add_interface(
    struct usbp_device *device,  
    const struct usbp_add_iface_request *request,
    const struct usbp_interface_methods *iface_methods,
    struct usbp_interface  **interface);



  

struct usbp_add_iface_request 

struct usbp_add_iface_request {
struct usbp_device_info devinfo;
struct usbp_interface_spec ispec;
struct usbp_endpoint_request endpoints[];

};

●

used to build the device descriptor

characteristic of the interface

type and directions of required endpoints



  

struct usbp_device_info 

struct usbp_device_info {
int16_t class_id;    /* can be USBP_ID_UNSPECIFIED */
uint8_t subclass_id;
uint8_t protocol;
int vendor_id;    /* can be USBP_ID_UNSPECIFIED */
uint16_t product_id;
uint16_t bcd_device; /* device release number in BCD */
const char *manufacturer_name;
const char *product_name;
const char *serial;         /* device's serial number */

};

● Used to build a device descriptor.
● If class_id is USBP_ID_UNSPECIFIED,  the 

value from other interface or the default value is 
used.



  

struct usbp_interface_spec 

struct usbp_interface_spec {
uByte class_id;
uByte subclass_id;
uByte protocol;

   const char *description;
enum USBP_PIPE0_USAGE {

USBP_PIPE0_NOTUSED, 
USBP_PIPE0_SHARED,  

   USBP_PIPE0_EXCLUSIVE 
} pipe0_usage;
uint8_t num_endpoints;

};

● Used to build a interface descriptor, and to 
request endpoints to be used for the interface.

Used to build an 
interface descriptor



  

struct usbp_endpoint_request 

struct usbp_endpoint_request {
uint8_t dir;   /* UE_DIR_IN or UE_DIR_OUT*/
uint8_t attributes; /* Transfer type: UE_ISOCHROMOUS,

                                         UE_BULK, 
                                         UE_INTERRUPT */

uint8_t epnum; /* endpoint number. recommended to set 0 */
   bool optional;

u_int packetsize;
   /* need more for isochronous */
};

● request an endpoint for a interface.
● if the client controller can not provide the non-optional endpoint,  the 

interface is not used.
● when epnum  is 0, platform choose a suitable endpoint. You can explicitly 

specify endpoint number here, but it is not recommended.



  

struct usbp_interface_methods 

struct usbp_interface_methods {
usbd_status (* configured)(

                   struct usbp_interface *);
usbd_status (* unconfigured)(

                  struct usbp_interface *);
usbd_status (* handle_device_request)(

struct usbp_interface *, 
       usb_device_request_t *,
       void **);

usbd_status (* fixup_idesc)(
struct usbp_interface *,

       usb_interface_descriptor_t *);
};

● callback methods from USBP to interface drivers.
● “configured” method is called when the interface is 

actually put in the device. In this method, the interface 
driver starts real task.



  

example sequence

Interface #1Interface #2 USBP kernel

attach

config_search, and
 config_attach

usbp_add_interface

configured

open pipes, etc.

usbp_add_interface

build a USB device

attach

attach



  

Other APIs

● usbp_delete_interface
● usbp_get_endpoint
● usbp_open_pipe
● usbd_alloc_xfer
● usbd_alloc_buffer
● usbd_free_xfer
● usbd_setup_xfer
● usbd_get_xfer_status
● usbd_transfer
● usbd_abort_pipe
● ….



  

Userland gateway

● /dev/usbp0/ctl
● /dev/usbp0/0, /dev/usbp0/1 …  for endpoints.
● ioctl(USBP_IOC_ADDIFACE)
● ioctl(USBP_GETEP)

– blocks until the interface is selected in the device.

● read/write on endpoint nodes.



  

Current implementation

https://github.com/bsh-git/netbsd-usb-peripheral.git



  

Comparison

● OpenBD
– usbf(4)

● Linux
– Gadget

– http://www.linux-usb.org/gadget/



  

Demonstration

● FTDI USB serial adapter
● CDC Ethernet emulation  (port of cdcef(4) of O)
● Umass in the userland (not working yet)



  

Future development

● Clean up the code , get reviewed, commit it into 
the codebase.

● More client controllers
● More interface drivers
● DMA support
● USB 2.0, 3.0
●



  

Questions?
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