
  

Peripheral-side USB support for 
NetBSD

Hiroyuki Bessho
(別所 博之)

bsh@NetBSD.org,
bessho@genetec.co.jp

mailto:bsh@NetBSD.org


  

What is this?

● With this framework,  Platforms that run 
NetBSD kernel can act as USB devices, such 
as USB serials, mass storage, printers, 
Ethernet adapters, etc.



  

Host Peripheral

SoC

USB 
Client  

Controller

USB cableUSB Host 
 Controller

This side of 
USB have been 
supported for 
many years.

Now we support 
this side of 

USB.

NetBSD 
kernel NetBSD 

kernel



  

USB Bus

USB Host 
Controller

Root 
Hub

Host

Hub

USB Device

USB Device

USB Device

USB Device

USB Device

Address=2

Address=4

Address=3

Address=7

Address=5

Address=6



  

Physical Connection

VBus (+5V)

GND

D+

D-

(ID)

Type-B
receptacle

Host (or Hub)

R

R



  

USB device

Interface

Host side Peripheral side

Endpoint #12

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver

Load 
drivers

Endpoint #7

Pipes

Logical Connection

Endpoint 

Endpoint



  

USB device

Interface

Host side Peripheral side

Endpoint

Endpoint

Interface
Endpoint

Endpoint

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver

USB device driver

Load 
drivers

Interface
Endpoint

Endpoint

Endpoint

Pipes

Composite device



  

USB descriptors
Device Descriptor

Device ID, 
Vendor ID, 
Device Class, ...

Configuration Descriptor

String Descriptor

Configuration Descriptor

Configuration Descriptor

Interface Descriptor

Interface Class Id, ...

Endpoint Descriptor

Endpoint Descriptor

Interface Descriptor

Interface Descriptor



  

Standard Device Descriptor

From USB 2.0 specification.



  

USB device

Interface

Host side Peripheral side

Endpoint

Interface
Endpoint

Endpoint

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver
for the device 

as-a whole

Load 
drivers

Endpoint

Pipes

Composite device and host-side 
drivers (1)

Determined by 
Device ID, 

Device Class 
ID, etc.



  

USB device

Interface A

Host side Peripheral side

Endpoint

Interface B
Endpoint

Endpoint

Endpoint #0

USB System Software
 (USB driver) Control pipe

USB device driver 
for the interface B

USB device driver 
for the interface A

Load 
drivers

Endpoint

Pipes

Composite device and host-side 
drivers (2)

Determined by 
Interface ID, 

Interface Class 
ID, etc.



  

Design Goal of our Framework

● Common tasks among many USB devices are 
done in the framework.
– Let framework users to focus on codes for 

functionality of interfaces they want to implement.

● The framwork and interface implementation 
should be independent of the characteristic of 
USB client controllers.



  

Design Goal of our Framework

● Interfaces can be implemented either as
– in-kernel device drivers, or

– userland programs

●  



  

Design Goal of our Framework

●  A USB device implemented using this 
framework can “transform” into a different USB 
device without rebooting into an another kernel 
binary.
– Interfaces can be attached to/detached from the 

USB device on-the-fly. 

●



  

Design Goal of our Framework

● USB Interface implementation can be used to 
make  a simple USB device, or to form a 
composite device combined with other interface 
implementations. 



  

components in the framework

● USBP
● Client controller drivers
● USB interface drivers
● Userland interface to USBP.
● Userland programs for USB interfaces.



  

components in the framework
Kernel space Userland

USB 
interface 

implemented 
as a 

userland 
program.

I/F to USBP

read/
write/
ioctl

USBP

USB 
interface 

implemented 
as a in-
kernel 

device driver

USB client 
controller 

dirver

USB 
Client 

Controller



  

components in the framework

● USBP
– logical driver for peripheral-side USB support.
– handles USB protocol on control pipe, such as 

enumeration and configuration.
– implements functionality of the USB devices

● Client controller drivers
– there are many kind of client controllers
– control send/receive of USB packets.
– USBP and interface drivers access to the controller 

through a common interface.



  

components in the framework

● USB interface drivers
– USB serial, communication device class, mass 

storage, human interface device, audio, video, etc.
● Userland interface to USBP.

– in order to implement USB interface functionality 
as userland programs.

● Userland programs for USB interfaces.



  

Kernel configuration for peripheral-
side support

pxaudc0 at obio0   # Client controller driver
usbp0 at pxaudc0   # USB Peripheral-side support

cdcef0 at usbp0    # CDC Ethernet model

upftdi0 at usbp0   # FTDI USB serial emulation
ucom* at upftdi?

usbpusr* at usbp?   #  Userland gateway for USBP

in config(5)



  

Multiple interfaces and a composite 
device

USBP

Interface driver #1

Interface driver #2

Interface driver #N

…
..

Device tree in kernel Implemented USB composite device

Device

Interface #1

Interface #2
×



  

API for USB interface drivers
Note:  the API is now being debugged and may be modified in the future.
          It is already modified from the version in my paper. 

usbd_status usbp_add_interface(
    struct usbp_device *device,  
    const struct usbp_add_iface_request *request,
    const struct usbp_interface_methods *iface_methods,
    struct usbp_interface  **interface);



  

struct usbp_add_iface_request 

struct usbp_add_iface_request {
struct usbp_device_info devinfo;
struct usbp_interface_spec ispec;
struct usbp_endpoint_request endpoints[];

};

●

used to build the device descriptor

characteristic of the interface

type and directions of required endpoints



  

struct usbp_device_info 

struct usbp_device_info {
int16_t class_id;    /* can be USBP_ID_UNSPECIFIED */
uint8_t subclass_id;
uint8_t protocol;
int vendor_id;    /* can be USBP_ID_UNSPECIFIED */
uint16_t product_id;
uint16_t bcd_device; /* device release number in BCD */
const char *manufacturer_name;
const char *product_name;
const char *serial;         /* device's serial number */

};

● Used to build a device descriptor.
● If class_id is USBP_ID_UNSPECIFIED,  the 

value from other interface or the default value is 
used.



  

struct usbp_interface_spec 

struct usbp_interface_spec {
uByte class_id;
uByte subclass_id;
uByte protocol;

   const char *description;
enum USBP_PIPE0_USAGE {

USBP_PIPE0_NOTUSED, 
USBP_PIPE0_SHARED,  

   USBP_PIPE0_EXCLUSIVE 
} pipe0_usage;
uint8_t num_endpoints;

};

● Used to build a interface descriptor, and to 
request endpoints to be used for the interface.

Used to build an 
interface descriptor



  

struct usbp_endpoint_request 

struct usbp_endpoint_request {
uint8_t dir;   /* UE_DIR_IN or UE_DIR_OUT*/
uint8_t attributes; /* Transfer type: UE_ISOCHROMOUS,

                                         UE_BULK, 
                                         UE_INTERRUPT */

uint8_t epnum; /* endpoint number. recommended to set 0 */
   bool optional;

u_int packetsize;
   /* need more for isochronous */
};

● request an endpoint for a interface.
● if the client controller can not provide the non-optional endpoint,  the 

interface is not used.
● when epnum  is 0, platform choose a suitable endpoint. You can explicitly 

specify endpoint number here, but it is not recommended.



  

struct usbp_interface_methods 

struct usbp_interface_methods {
usbd_status (* configured)(

                   struct usbp_interface *);
usbd_status (* unconfigured)(

                  struct usbp_interface *);
usbd_status (* handle_device_request)(

struct usbp_interface *, 
       usb_device_request_t *,
       void **);

usbd_status (* fixup_idesc)(
struct usbp_interface *,

       usb_interface_descriptor_t *);
};

● callback methods from USBP to interface drivers.
● “configured” method is called when the interface is 

actually put in the device. In this method, the interface 
driver starts real task.



  

example sequence

Interface #1Interface #2 USBP kernel

attach

config_search, and
 config_attach

usbp_add_interface

configured

open pipes, etc.

usbp_add_interface

build a USB device

attach

attach



  

Other APIs

● usbp_delete_interface
● usbp_get_endpoint
● usbp_open_pipe
● usbd_alloc_xfer
● usbd_alloc_buffer
● usbd_free_xfer
● usbd_setup_xfer
● usbd_get_xfer_status
● usbd_transfer
● usbd_abort_pipe
● ….



  

Userland gateway

● /dev/usbp0/ctl
● /dev/usbp0/0, /dev/usbp0/1 …  for endpoints.
● ioctl(USBP_IOC_ADDIFACE)
● ioctl(USBP_GETEP)

– blocks until the interface is selected in the device.

● read/write on endpoint nodes.



  

Current implementation

https://github.com/bsh-git/netbsd-usb-peripheral.git



  

Comparison

● OpenBD
– usbf(4)

● Linux
– Gadget

– http://www.linux-usb.org/gadget/



  

Demonstration

● FTDI USB serial adapter
● CDC Ethernet emulation  (port of cdcef(4) of O)
● Umass in the userland (not working yet)



  

Future development

● Clean up the code , get reviewed, commit it into 
the codebase.

● More client controllers
● More interface drivers
● DMA support
● USB 2.0, 3.0
●



  

Questions?



  

Acknowledgement

● I started this project by porting OpenBSD's 
usbf(4) to NetBSD, which was written by Uwe 
stühler and other OpenBSD developers.

● Taylor R. Campbell, Greg Oster, and Masanobu 
Saitoh for reviewing my paper.

● Dan Harris and co-workers at Genetec corp. for 
good advice in my presentation rehearsal.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

